
pysubgroup Documentation
Release latest

mgbckr

Aug 11, 2023

CONTENTS

1 Contents 3
1.1 pysubgroup . 3
1.2 Components . 6
1.3 Contributing . 12
1.4 License . 16
1.5 Contributors . 20
1.6 Changelog . 21
1.7 pysubgroup . 25

2 Indices and tables 43

Python Module Index 45

Index 47

i

ii

pysubgroup Documentation, Release latest

pysubgroup is a Python package that enables subgroup discovery in Python+pandas (scipy stack) data analysis envi-
ronment. It provides for a lightweight, easy-to-use, extensible and freely available implementation of state-of-the-art
algorithms, interestingness measures and presentation options.

Start reading here: Overview

Prototype phase

This library is still in a prototype phase. It has, however, been already successfully employed in active application
projects.

CONTENTS 1

pysubgroup Documentation, Release latest

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 pysubgroup

pysubgroup is a Python package that enables subgroup discovery in Python+pandas (scipy stack) data analysis envi-
ronment. It provides for a lightweight, easy-to-use, extensible and freely available implementation of state-of-the-art
algorithms, interestingness measures and presentation options.

This library is still in a prototype phase. It has, however, been already successfully employed in active application
projects.

1.1.1 Subgroup Discovery

Subgroup Discovery is a well established data mining technique that allows you to identify patterns in your data. More
precisely, the goal of subgroup discovery is to identify descriptions of data subsets that show an interesting distribution
with respect to a pre-specified target concept. For example, given a dataset of patients in a hospital, we could be
interested in subgroups of patients, for which a certain treatment X was successful. One example result could then be
stated as:

“While in general the operation is successful in only 60% of the cases”, for the subgroup of female patients under 50
that also have been treated with drug d, the success rate was 82%.”

Here, a variable operation success is the target concept, the identified subgroup has the interpretable description fe-
male=True AND age<50 AND drug_D = True. We call these single conditions (such as female=True) selection expres-
sions or short selectors. The interesting behavior for this subgroup is that the distribution of the target concept differs
significantly from the distribution in the overall general dataset. A discovered subgroup could also be seen as a rule:

female=True AND age<50 AND drug_D = True ==> Operation_outcome=SUCCESS

Computationally, subgroup discovery is challenging since a large number of such conjunctive subgroup descriptions
have to be considered. Of course, finding computable criteria, which subgroups are likely interesting to a user is also
an eternal struggle. Therefore, a lot of literature has been devoted to the topic of subgroup discovery (including some
of my own work). Recent overviews on the topic are for example:

• Herrera, Franciso, et al. “An overview on subgroup discovery: foundations and applications.” Knowledge and
information systems 29.3 (2011): 495-525.

• Atzmueller, Martin. “Subgroup discovery.” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Dis-
covery 5.1 (2015): 35-49.

• And of course, my point of view on the topic is summarized in my dissertation:

3

https://pysubgroup.readthedocs.io/en/stable/
https://coveralls.io/r/flemmerich/pysubgroup
https://pypi.org/project/pysubgroup/
https://anaconda.org/conda-forge/pysubgroup
https://pepy.tech/project/pysubgroup
https://scholar.google.de/scholar?q=Herrera%2C+Franciso%2C+et+al.+%E2%80%9CAn+overview+on+subgroup+discovery%3A+foundations+and+applications.%E2%80%9D+Knowledge+and+information+systems+29.3+(2011)%3A+495-525.
https://scholar.google.de/scholar?q=Atzmueller%2C+Martin.+%E2%80%9CSubgroup+discovery.%E2%80%9D+Wiley+Interdisciplinary+Reviews%3A+Data+Mining+and+Knowledge+Discovery+5.1+(2015)%3A+35-49.
https://opus.bibliothek.uni-wuerzburg.de/files/9781/Dissertation-Lemmerich.pdf

pysubgroup Documentation, Release latest

Prerequisites and Installation

pysubgroup is built to fit in the standard Python data analysis environment from the scipy-stack. Thus, it can be used
just having pandas (including its dependencies numpy, scipy, and matplotlib) installed. Visualizations are carried out
with the matplotlib library.

pysubgroup consists of pure Python code. Thus, you can simply download the code from the repository and copy
it in your site-packages directory. pysubgroup is also on PyPI and should be installable using: pip install
pysubgroup

Note: Some users complained about the pip installation not working. If, after the installation, it still doesn’t find the
package, then do the following steps:

1. Find where the directory site-packages is.

2. Copy the folder pysubgroup, which contains the source code, into the site-packages directory. (WARNING:
This is not the main repository folder. The pysubgroup folder is inside the main repository folder, at the same
level as doc)

3. Now you can import the module with import pysubgroup.

1.1.2 How to use:

A simple use case (here using the well known titanic data) can be created in just a few lines of code:

import pysubgroup as ps

Load the example dataset
from pysubgroup.datasets import get_titanic_data
data = get_titanic_data()

target = ps.BinaryTarget ('Survived', True)
searchspace = ps.create_selectors(data, ignore=['Survived'])
task = ps.SubgroupDiscoveryTask (

data,
target,
searchspace,
result_set_size=5,
depth=2,
qf=ps.WRAccQF())

result = ps.DFS().execute(task)

The first line imports pysubgroup package. The following lines load an example dataset (the popular titanic dataset).

Therafter, we define a target, i.e., the property we are mainly interested in (_‘survived’}. Then, we define the
searchspace as a list of basic selectors. Descriptions are built from this searchspace. We can create this list manu-
ally, or use an utility function. Next, we create a SubgroupDiscoveryTask object that encapsulates what we want to
find in our search. In particular, that comprises the target, the search space, the depth of the search (maximum num-
bers of selectors combined in a subgroup description), and the interestingness measure for candidate scoring (here, the
Weighted Relative Accuracy measure).

The last line executes the defined task by performing a search with an algorithm—in this case depth first search. The
result of this algorithm execution is stored in a SubgroupDiscoveryResults object.

To just print the result, we could for example do:

4 Chapter 1. Contents

pysubgroup Documentation, Release latest

print(result.to_dataframe())

to get:

1.1.3 Key classes

Here is an outline on the most important classes:

• Selector: A Selector represents an atomic condition over the data, e.g., age < 50. There several subtypes of
Selectors, i.e., NominalSelector (color==BLUE), NumericSelector (age < 50) and NegatedSelector (a wrapper
such as not selector1)

• SubgroupDiscoveryTask: As mentioned before, encapsulates the specification of how an algorithm should search
for interesting subgroups

• SubgroupDicoveryResult: These are the main outcome of a subgroup disovery run. You can obtain a list of
subgroups using the to_subgroups() or to a dataframe using to_dataframe()

• Conjunction: A conjunction is the most widely used SubgroupDescription, and indicates which data instances
are covered by the subgroup. It can be seen as the left hand side of a rule.

1.1.4 License

We are happy about anyone using this software. Thus, this work is put under an Apache license. However, if this
constitutes any hindrance to your application, please feel free to contact us, we am sure that we can work something
out.

Copyright 2016-2019 Florian Lemmerich

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

1.1.5 Warning

• GP-growth is in an experimental stage.

1.1. pysubgroup 5

pysubgroup Documentation, Release latest

1.1.6 Cite

If you are using pysubgroup for your research, please consider citing our demo paper:

Lemmerich, F., & Becker, M. (2018, September). pysubgroup: Easy-to-use subgroup␣
→˓discovery in python. In Joint European Conference on Machine Learning and Knowledge␣
→˓Discovery in Databases (ECMLPKDD). pp. 658-662.

bibtex:

@inproceedings{lemmerich2018pysubgroup,
title={pysubgroup: Easy-to-use subgroup discovery in python},
author={Lemmerich, Florian and Becker, Martin},
booktitle={Joint European Conference on Machine Learning and Knowledge Discovery in␣

→˓Databases},
pages={658--662},
year={2018}

}

1.1.7 Note

This project has been set up using PyScaffold 4.5. For details and usage information on PyScaffold see https:
//pyscaffold.org/.

1.2 Components

1.2.1 GP-Growth

This tree based algorithm uses a condensed representation (a so called valuation basis) to find interesting subgroups.
The main advantage of this approach is, that the (potentially large) database has to be scanned only twice and thereafter
all the necessary information is represented as more compact pattern-tree. Gp-growth is a generalisation of the popular
fp-growth algorithm. So refer to instructional material on fp-growth for more in depth knowledge on the workings of
this tree based algorithm.

Contents

• GP-Growth

– Basic usage

– Create a custom target

6 Chapter 1. Contents

https://pyscaffold.org/
https://pyscaffold.org/
https://en.wikipedia.org/wiki/Association_rule_learning#FP-growth_algorithm

pysubgroup Documentation, Release latest

Basic usage

The basic usage of the gp-growth algorithm is not very different from the usage of any other algorithm in this package.

import pysubgroup as ps

Load the example dataset
from pysubgroup.datasets import get_titanic_data
data = get_titanic_data()

target = ps.NominalSelector ('Survived', True)
searchspace = ps.create_selectors(data, ignore=['Survived'])
task = ps.SubgroupDiscoveryTask (data, target, dearchspace, result_set_size=5, depth=2,␣
→˓qf=ps.WRAccQF())
GpGrowth.execute(task)

But beware that gp-growth is using an exhaustive search strategy! This can greatly increase the runtime for high
search depth. You can specify the mode argument in the constructor of GpGrowth to run gp-growth either bottom
up (mode='b_u') or top down (mode='b_u'). As gp growth is a generalisation of fp-growth you can also perform
standard fp-growth using gp_growth by using the CountQF (Frequent Itemset Targets) quality function.

Create a custom target

If you consider to use the gp-growth algorithm for your custom target that is totally possible if you find a valuation
basis. We will now first introduce the concept of a valuation basis and thereafter outline the gp-growth interface that
you have to support to use your quality function with our gp-growth implementation.

Valuation Basis

Think of a valuation basis as a codensed representation of a subgroup that allows to quickly compute the same repre-
sentation for a union of two disjoint subgroups.

We call the function which takes the valuation basis of two disjoint sets and computes the valuation basis for the unified
set merge. The function that compute the necessary statistics from a valuation basis stats_from_basis.

Now we can formulate: Given two disjoint sets 𝐴 and 𝐵 with 𝐴 ∩ 𝐵 = ∅ and their valuation bases 𝑣(𝐴) and 𝑣(𝐵)
with their functions stats_from_basis and merge as defined above, we can compute the properties of 𝐴∪𝐵 instead
of from the union of the instances from the merged valuation basis. This can be summarized through the following
equation:

𝑝𝑟𝑜𝑝𝑠_𝑓𝑟𝑜𝑚_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝐴 ∪𝐵) = 𝑝𝑟𝑜𝑝𝑠_𝑓𝑟𝑜𝑚_𝑏𝑎𝑠𝑖𝑠(𝑚𝑒𝑟𝑔𝑒(𝑣(𝐴), 𝑣(𝐵)))

Required Methods

To make a target and quality function suitable for gp-growth you have to provide several methods (all methods start with
gp_ to indicate that they are used in the gp-growth algorithm). In addition to the standard quality function methods
(see Custom Quality Function) the following methods should be implemented to make a quality funciton usable with
gp_growth.

class MyGpQualityFunction
def gp_get_basis(self, row_index):
""" returns the valuation basis of the element at this row_index """

(continues on next page)

1.2. Components 7

pysubgroup Documentation, Release latest

(continued from previous page)

pass

def gp_get_null_vector(self):
""" returns the zero element of the valuation basis """

pass

@staticmethod
def gp_merge(v_l, v_r):
""" merges the v_r valuation basis into the v_l valuation basis inplace! """

pass

def gp_get_statistics(self, cover_arr, v):
""" computes the statistics for this quality function from the valuation basis v """

pass

@property
def gp_requires_cover_arr(self) -> bool:
""" returns a boolean value that indicates whether a cover array is required when␣

→˓calling the gp_get_statistics function

usually this value is False
"""

pass

Saving a gp_tree

It is possible to save a gp tree to a txt file for e.g. debugging purpose. You therefor have to implementd the gp_to_str
function which takes a valuation basis and returns a string representation. It is an intentional choide to not call the str
function on the valuation basis directly.

def gp_to_str(self, basis) -> str:
""" returns a string representation of the valuation basis """

pass

1.2.2 Selectors

Selectors are objects that if applied to a dataset yield a set of instances. If an instance is retured from a selector we
say that the selectors covers that instance. While the term selectors usually only refers to basic selectors, conjunctions
and disjunctions as well as negated selectors are also in a general sense selectors. Broadly speaking anything that
implements the code:covers function is a selector. We will first introduce the frequently used basic selectors and
thereafter the more general selectors that are the conjunction and disjunction. We conclude the chapter by showing
how to implement a selectors yourself.

8 Chapter 1. Contents

pysubgroup Documentation, Release latest

Basic Selectors

The pysubgroup package provides two basic selectors: The EqualitySelector and the IntervalSelector. Lets start by
exploring the EqualitySelector:

import pysubgroup as ps
import pandas as pd

create dataset
first_names = ['Alex', 'Anna', 'Alex']
sur_names = ['Smith', 'Johnson', 'Williams']
ages = [40, 25, 32]
df = pd.DataFrame.from_dict({'First_name':first_names, 'Sur_name': sur_names, 'age':ages}
→˓)

create selector
alex_selector = ps.EqualitySelector('First_name', 'Alex')
age_selector = ps.EqualitySelector('age', 22)
apply selectors to dataframe
print('instances with ', str(alex_selector), alex_selector.covers(df))
print('instances with', str(age_selector), age_selector.covers(df))

instances with First_name=='Alex' [True False True]
instances with age==22 [False False False]

The output indicates that the first and third instance in the dataset have a first name that is equal to 'Alex'. The second
output shows that no instances in our dataset is of age 22. The EqualitySelector selector can be used on many different
datatypes, but is most useful on binary, string and categorical data. In addition to the EqualitySelector the pysubgroup
package also provides the IntervalSelector. The following codes selects all instances from the database, which are in
the age range 18 (included) to 40 (excluded).

interval_selector = ps.IntervalSelector('age', 18, 40)
print(interval_selector.covers(df))

[False True True]

The outpu shows that the second and third instance in our dataset have an age within the interval [18, 40).

Selectors are the building block of all rules generated with the pysubgroup package. If you want to write your own
custom selector that is not a problem see customselector for references.

Negations

The pysubgroup package also provides the NegatedSelector class that takes any selector (not just basic ones) and inverts
it.

inverted_selector = ps.NegatedSelector(alex_selector)
print('instances with first name not equal to Alex', inverted_selector.covers(df))

instances with first name not equal to Alex [False True False]

The output is: instances with first name not equal to Alex [False, True, False].

1.2. Components 9

pysubgroup Documentation, Release latest

Conjunctions

Most of the rules that are generated with the pysubgroup package use conjunctions to form more complex queries.
Continuing the running example from above we can find all persons whose name is Alex and which have an age in the
interval [18, 40) like so:

conj = ps.Conjunction([interval_selector, alex_selector])
print('instances with', str(conj), conj.covers(df))

instances with First_name=='Alex' AND age: [18:40[[False False True]

The output shows that only the last instance is covered by our conjunction.

Disjunctions

The pysubgroup package also provides disjunctions with the Disjunction class. Continuing the running example we
can find all persons whose name is Alex or which have an age in the interval [18, 40) like so:

disj = ps.Disjunction([interval_selector, alex_selector])
print('instances with', str(disj), disj.covers(df))

instances with First_name=='Alex' OR age: [18:40[[True True True]

We can see that all instances are covered by our conjunction.

Implementing your own

As already mentioned in the introduction on selectors, anything that provides a cover function is a selector. In this case
we will show how to implement a custom basic selector that checks whether a string contains a given substring:

class StrContainsSelector:
def __init__(self, column, substr):

self.column = column
self.substr = substr

def covers(self, df):
return df[self.column].str.contains(self.substr).to_numpy()

contains_selector = StrContainsSelector('Sur_name','m')
print(contains_selector.covers(df))

[True False True]

The output shows that only the first and last instance contain an m in their name. In addition to the covers function it
is certainly advised to also implement the __str__ and __repr__ functions. This selector can now be added to the
searchspace for any algorithm execution.

10 Chapter 1. Contents

pysubgroup Documentation, Release latest

1.2.3 Targets and Quality Functions

To define the goal of our subgroup discovery task, we use targets and quality functions. Targets are used to define which
attributes play a significant role and can provide common statistics for a subgroup in question. Quality functions assign
a score to each subgroup. These scores are used by all the algorithms to determine the most interesting subgroups.

Frequent Itemset Targets

The most simple target is the FITarget with its associated quality functions CountQF and AreaQf. The CountQF simple
counts the number of instances covered by the subgroup in question. The AreaQF multiplies the depth or length of the
subgroup description with the number of instances covered by that description.

Binary Targets

For Boolean or Binary Targets we provide the ChiSquaredQF as well as the StandardQF quality functions. The Stan-
dardQF quality function uses a parameter 𝛼 to weight the relative size 𝑁𝑆𝐺

𝑁 of a subgroup and multiplies it with the
differences in relations of positive instances 𝑝 to the number of instances 𝑁(︂

𝑁𝑆𝐺

𝑁

)︂𝛼 (︂
𝑝𝑆𝐺

𝑁𝑆𝐺
− 𝑝

𝑁

)︂
The StandardQF also supports an optimistic estimate.

The ChiSquaredQF is calculated based on the following contigency table which is then passed to the scipy
chi2_contigency function. The small 𝑛 represents the number of negative instances and should not be confused with
the capital 𝑁 which represents the total number of instances.

𝑝𝑆𝐺 𝑝− 𝑝𝑆𝐺

𝑛𝑆𝐺 𝑛− 𝑛𝑆𝐺

Nominal Targets

Currently pysubgroup only supports nominal targets as binary targets. So you can look for deviations of one nominal
value with respect to all othe nominal values.

Numeric Targets

For numeric targets pysubgroup offers the StandardQFNumeric which is defined similar to the StandardQF(︂
𝑁𝑆𝐺

𝑁

)︂𝛼

(𝜇𝑆𝐺 − 𝜇)

where 𝜇𝑆𝐺 and 𝜇 are the mean value for the subgroup and entire dataset respectively. For the StandardQFNumeric we
offer three optimistic estimates: Average, Summation and Ordering. These are in detail described in Florian Lem-
merich’s dissertation. You can choose between the different optimistic estimates by using the keyword argument
estimator the different options are 'sum', 'average', and 'order'

1.2. Components 11

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2_contingency.html

pysubgroup Documentation, Release latest

Custom Quality Function

To create a custom quality function that works will all algorithms except gp_growth.

class MyQualityFunction:
def calculate_constant_statistics(self, task):

""" calculate_constant_statistics
This function is called once for every execution,
it should do any preparation that is necessary prior to an execution.

"""
pass

def calculate_statistics(self, subgroup, data=None):
""" calculates necessary statistics

this statistics object is passed on to the evaluate
and optimistic_estimate functions

"""
pass

def evaluate(self, subgroup, statistics_or_data=None):
""" return the quality calculated from the statistics """
pass

def optimistic_estimate(self, subgroup, statistics=None):
""" returns optimistic estimate

if one is available return it otherwise infinity"""
pass

1.3 Contributing

TODO: UPDATE THIS

Welcome to pysubgroup contributor’s guide.

This document focuses on getting any potential contributor familiarized with the development processes, but other
kinds of contributions are also appreciated.

If you are new to using git or have never collaborated in a project previously, please have a look at contribution-
guide.org. Other resources are also listed in the excellent guide created by FreeCodeCamp1.

Please notice, all users and contributors are expected to be open, considerate, reasonable, and respectful. When in
doubt, Python Software Foundation’s Code of Conduct is a good reference in terms of behavior guidelines.

1 Even though, these resources focus on open source projects and communities, the general ideas behind collaborating with other developers to
collectively create software are general and can be applied to all sorts of environments, including private companies and proprietary code bases.

12 Chapter 1. Contents

https://opensource.guide/how-to-contribute
https://opensource.guide/how-to-contribute
https://git-scm.com
http://www.contribution-guide.org/
http://www.contribution-guide.org/
https://github.com/freecodecamp/how-to-contribute-to-open-source
https://www.python.org/psf/conduct/

pysubgroup Documentation, Release latest

1.3.1 Issue Reports

If you experience bugs or general issues with pysubgroup, please have a look on the issue tracker. If you don’t see
anything useful there, please feel free to fire an issue report.

Tip: Please don’t forget to include the closed issues in your search. Sometimes a solution was already reported, and
the problem is considered solved.

New issue reports should include information about your programming environment (e.g., operating system, Python
version) and steps to reproduce the problem. Please try also to simplify the reproduction steps to a very minimal
example that still illustrates the problem you are facing. By removing other factors, you help us to identify the root
cause of the issue.

1.3.2 Documentation Improvements

You can help improve pysubgroup docs by making them more readable and coherent, or by adding missing information
and correcting mistakes.

pysubgroup documentation uses Sphinx as its main documentation compiler. This means that the docs are kept in the
same repository as the project code, and that any documentation update is done in the same way as a code contribution.
We are using CommonMark with MyST extensions as our markup language.

Tip: Please notice that the GitHub web interface provides a quick way of propose changes in pysubgroup’s files.
While this mechanism can be tricky for normal code contributions, it works perfectly fine for contributing to the docs,
and can be quite handy.

If you are interested in trying this method out, please navigate to the docs folder in the source repository, find which
file you would like to propose changes and click in the little pencil icon at the top, to open GitHub’s code editor. Once
you finish editing the file, please write a message in the form at the bottom of the page describing which changes have
you made and what are the motivations behind them and submit your proposal.

When working on documentation changes in your local machine, you can compile them using tox :

tox -e docs

and use Python’s built-in web server for a preview in your web browser (http://localhost:8000):

python3 -m http.server --directory 'docs/_build/html'

1.3.3 Code Contributions

Submit an issue

Before you work on any non-trivial code contribution it’s best to first create a report in the issue tracker to start a
discussion on the subject. This often provides additional considerations and avoids unnecessary work.

1.3. Contributing 13

https://github.com/%3CUSERNAME%3E/pysubgroup/issues
https://www.sphinx-doc.org/en/master/
https://commonmark.org/
https://myst-parser.readthedocs.io/en/latest/syntax/syntax.html
https://docs.github.com/en/github/managing-files-in-a-repository/managing-files-on-github/editing-files-in-your-repository
https://github.com/%3CUSERNAME%3E/pysubgroup
https://docs.github.com/en/github/managing-files-in-a-repository/managing-files-on-github/editing-files-in-your-repository
https://tox.readthedocs.io/en/stable/
https://github.com/%3CUSERNAME%3E/pysubgroup/issues

pysubgroup Documentation, Release latest

Create an environment

Before you start coding, we recommend creating an isolated virtual environment to avoid any problems with your
installed Python packages. This can easily be done via either virtualenv:

virtualenv <PATH TO VENV>
source <PATH TO VENV>/bin/activate

or Miniconda:

conda create -n pysubgroup python=3 six virtualenv pytest pytest-cov
conda activate pysubgroup

Clone the repository

1. Create an user account on GitHub if you do not already have one.

2. Fork the project repository: click on the Fork button near the top of the page. This creates a copy of the code
under your account on GitHub.

3. Clone this copy to your local disk:

git clone git@github.com:YourLogin/pysubgroup.git
cd pysubgroup

4. You should run:

pip install -U pip setuptools -e .

to be able to import the package under development in the Python REPL.

5. Install pre-commit:

pip install pre-commit
pre-commit install

pysubgroup comes with a lot of hooks configured to automatically help the developer to check the code being
written.

Implement your changes

1. Create a branch to hold your changes:

git checkout -b my-feature

and start making changes. Never work on the main branch!

2. Start your work on this branch. Don’t forget to add docstrings to new functions, modules and classes, especially
if they are part of public APIs.

3. Add yourself to the list of contributors in AUTHORS.rst.

4. When you’re done editing, do:

git add <MODIFIED FILES>
git commit

14 Chapter 1. Contents

https://realpython.com/python-virtual-environments-a-primer/
https://virtualenv.pypa.io/en/stable/
https://docs.conda.io/en/latest/miniconda.html
https://github.com/%3CUSERNAME%3E/pysubgroup
https://pre-commit.com/
https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html

pysubgroup Documentation, Release latest

to record your changes in git.

Please make sure to see the validation messages from pre-commit and fix any eventual issues. This should
automatically use flake8/black to check/fix the code style in a way that is compatible with the project.

Important: Don’t forget to add unit tests and documentation in case your contribution adds an additional feature
and is not just a bugfix.

Moreover, writing a descriptive commit message is highly recommended. In case of doubt, you can check the
commit history with:

git log --graph --decorate --pretty=oneline --abbrev-commit --all

to look for recurring communication patterns.

5. Please check that your changes don’t break any unit tests with:

tox

(after having installed tox with pip install tox or pipx).

You can also use tox to run several other pre-configured tasks in the repository. Try tox -av to see a list of the
available checks.

Submit your contribution

1. If everything works fine, push your local branch to the remote server with:

git push -u origin my-feature

2. Go to the web page of your fork and click “Create pull request” to send your changes for review.

Troubleshooting

The following tips can be used when facing problems to build or test the package:

1. Make sure to fetch all the tags from the upstream repository. The command git describe --abbrev=0
--tags should return the version you are expecting. If you are trying to run CI scripts in a fork repository,
make sure to push all the tags. You can also try to remove all the egg files or the complete egg folder, i.e., .eggs,
as well as the *.egg-info folders in the src folder or potentially in the root of your project.

2. Sometimes tox misses out when new dependencies are added, especially to setup.cfg and docs/
requirements.txt. If you find any problems with missing dependencies when running a command with tox,
try to recreate the tox environment using the -r flag. For example, instead of:

tox -e docs

Try running:

tox -r -e docs

3. Make sure to have a reliable tox installation that uses the correct Python version (e.g., 3.7+). When in doubt you
can run:

1.3. Contributing 15

https://git-scm.com
https://pre-commit.com/
https://flake8.pycqa.org/en/stable/
https://pypi.org/project/black/
https://chris.beams.io/posts/git-commit
https://tox.readthedocs.io/en/stable/
https://tox.readthedocs.io/en/stable/
https://github.com/%3CUSERNAME%3E/pysubgroup
https://tox.readthedocs.io/en/stable/
https://tox.readthedocs.io/en/stable/
https://tox.readthedocs.io/en/stable/

pysubgroup Documentation, Release latest

tox --version
OR
which tox

If you have trouble and are seeing weird errors upon running tox, you can also try to create a dedicated virtual
environment with a tox binary freshly installed. For example:

virtualenv .venv
source .venv/bin/activate
.venv/bin/pip install tox
.venv/bin/tox -e all

4. Pytest can drop you in an interactive session in the case an error occurs. In order to do that you need to pass
a --pdb option (for example by running tox -- -k <NAME OF THE FALLING TEST> --pdb). You can also
setup breakpoints manually instead of using the --pdb option.

1.3.4 Maintainer tasks

Releases

If you are part of the group of maintainers and have correct user permissions on PyPI, the following steps can be used
to release a new version for pysubgroup:

1. Make sure all unit tests are successful.

2. Tag the current commit on the main branch with a release tag, e.g., v1.2.3.

3. Push the new tag to the upstream repository, e.g., git push upstream v1.2.3

4. Clean up the dist and build folders with tox -e clean (or rm -rf dist build) to avoid confusion with
old builds and Sphinx docs.

5. Run tox -e build and check that the files in dist have the correct version (no .dirty or git hash) according
to the git tag. Also check the sizes of the distributions, if they are too big (e.g., > 500KB), unwanted clutter may
have been accidentally included.

6. Run tox -e publish -- --repository pypi and check that everything was uploaded to PyPI correctly.

1.4 License

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

(continues on next page)

16 Chapter 1. Contents

https://tox.readthedocs.io/en/stable/
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://tox.readthedocs.io/en/stable/
https://docs.pytest.org/en/stable/usage.html#dropping-to-pdb-python-debugger-at-the-start-of-a-test
https://pypi.org/
https://github.com/%3CUSERNAME%3E/pysubgroup
https://git-scm.com
https://git-scm.com
https://pypi.org/

pysubgroup Documentation, Release latest

(continued from previous page)

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and

(continues on next page)

1.4. License 17

pysubgroup Documentation, Release latest

(continued from previous page)

subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents

(continues on next page)

18 Chapter 1. Contents

pysubgroup Documentation, Release latest

(continued from previous page)

of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,

(continues on next page)

1.4. License 19

pysubgroup Documentation, Release latest

(continued from previous page)

or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright 2020 Florian Lemmerich

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

1.5 Contributors

• Florian Lemmerich (flemmerich) florian@lemmerich.net

• Martin Becker (mgbckr) mgbckr@informatik.uni-rostock.de

• Felix Stamm (Feelx234)

20 Chapter 1. Contents

mailto:florian@lemmerich.net
mailto:mgbckr@informatik.uni-rostock.de

pysubgroup Documentation, Release latest

1.6 Changelog

1.6.1 [0.7.6] - 2020-05-20

Some internal changes to the continuous integration pipeline on top of version 0.7.6.

1.6.2 [0.7.5] - 2020-05-20

Moved to pyscaffold, src/test structure and GitHub Actions.

1.6.3 [0.7.1] - 2020-05-20

Added

• you can now additionally provide constraints to SubgroupDiscovery

– MinSupportConstraint added

• you can now run the slow tests py passing --runslow to pytest

• Conjunction, Disjunction and Selectors now all have the public property .selectors that provides all basic
selectors involved

Removed

• support for weights has been removed, it will probably be added in the future as seperate targets and Quality
functions.

Changed

• create_numeric_selector_for_attribute has been renamed to create_numeric_selectors_for_attribute
(inserting an s) This brings it in lign with the corresponding name shema for nominal.

Changed internally

• statistics are now also store along with score and description

• The function ps.get_cover_array_and_size was added, it allows for a consistent way to acces a cover array
(a.k.a. sth to be thrown into a dataframe or a numpy array)

• algorithm tests now also call the to_subgroups and to_dataframe methods to check they work with that
algorithm

• the order of calculate_statistics and get_base_statistics are now in lign with that of quality functions
(first subgroup then data)

• the size of a subgroup specified in a statistics object is now called size_sg uniformly. This avoids confusion
with the size attribute of numpy arrays etc.

1.6. Changelog 21

pysubgroup Documentation, Release latest

1.6.4 [0.7.0] - 2020-04-24

This update prepares pysubgroup for a better future. To do so we had to break backwards compatibility. Many of the
classes that you know and love have been renamed so as to make their purpose more clear.

Changed:

• SubgroupDescription is now called Conjunction

• NominalTarget is now called BinaryTarget

• algorithms now return a SubgroupDiscoveryResult object

• the structure of quality functions changed (see documentation for more info)

Added

• pysubgroup now has a bunch of tests

• some algorithms and quality functions support numba for just in time compilation

• ModelTarget

• gp-growth

• 3 types of Representations (bitset, set, numpy-set)

• Refinement operator

• Disjunction

• New algorithms

1.6.5 [0.6.2.1] - 2019-20-11

Added

• Apriori now has the option to disable numba using the use_numba flag

• SimpleSrach now has a progressbar (enabled via the show_progress=True flag)

• The number of quality function evaluations can now be tracked using the CountCallsInterestingMeasure as a
wrapper

• StandardQfNumeric now offers three different options to calculate the optimistic estimate

– ‘sum’ (default) sums the values larger then the dataset mean (cf. Lemmerich 2014 p. 81 top)

– ‘average’ uses the maximum target values as estimate (cf. Lemmerich 2014 p. 82 center)

– ‘order’ uses ordering based bounds (cf. Lemmerich 2014 p. 89 bottom)

22 Chapter 1. Contents

pysubgroup Documentation, Release latest

Bugfix

• Apriori now calculates the constant statistics before using representation

• DFS now properly works with any quality function

Improvements

• Apriori now reuses the compiled numba function

• Nominal target now uses subgroup.size to access the size of a subgroup representation

• StaticSpecializationOperator now avoids checking refinements of the same attribute

• test_algorithms_numeric now checks more algorithms

1.6.6 [0.6.2] - 2019-31-10

Changed

• SubgroupDescription has been replaced with Conjunction

• Selector .covers function returns a numpy array instead of a pandas Series (speedup on dense data)

• Conjunction .selectors is renamed to Conjunction._selectors

• quality functions have a different interface

– calculate_constant_statistics(self, task) caches necessary precomputation

– calculate_statistics(self, subgroup, data=None) returns a namedtuple with necessary statistics

– evaluate(self, subgroup, statistics=None) computes quality from provided statistics

– optimistic_estimate(self, subgroup, statistics=None) computes optimistic estimate from provided statistics

•

Added

• Conjunction (replaces SubgroupDescription)

• Disjunction

• DNF (Disjunctive Normal Form)

• representations (given a dataset selectors are queried only once)

– BitsetRepresentation

– SetRepresentation

– NumpySetRepresentation

• SimpleSearch algorithm

• DFS (Depth first search) using a representation for StandardQF

• tests

– access to datasets for testing is provided through DataSets class

– tests for selector classes (NominalSelector, NumericSelector)

1.6. Changelog 23

pysubgroup Documentation, Release latest

∗ __eq__

∗ __lt__

∗ __hash__ similarity

∗ uniqueness of selectors

∗ cover function for NominalSelector

– tests for Conjunction, Disjuntion

∗ __eq__

∗ __lt__

∗ __hash__ similarity

∗ cover

– tests for algorithms with nominal target concept on the creditg dataset (StandardQF(1) + Nomi-
nalSearchSpace, StandardQF(1)+Nominal&Numeric Searchspace, StandardQF(0.5)+Nominal&Numeric
Searchspace)

∗ Apriori

∗ SimpleDFS

∗ BeamSearch

∗ DFS_bitset

∗ DFS_set

∗ DFS_numpy_sets

∗ SimpleSearch

– tests for algorithms with numeric target concept (StandardQFNumeric)

∗ Apriori

∗ SimpleDFS

∗ DFSNumeric

– tests for algorithm with fi target (CountQF)

∗ Apriori

∗ DFS

– tests for algorithms to find the best Disjunctions

∗ Apriori

∗ Generalising BFS

24 Chapter 1. Contents

pysubgroup Documentation, Release latest

Improvements

• Apriori algorithm now runs significantly faster due to precomputing and usage of list comprehension

1.7 pysubgroup

1.7.1 pysubgroup package

Submodules

pysubgroup.algorithms module

Created on 29.04.2016

@author: lemmerfn

class pysubgroup.algorithms.Apriori(representation_type=None, combination_name='Conjunction',
use_numba=True)

Bases: object

execute(task)

get_next_level(promising_candidates)

get_next_level_candidates(task, result, next_level_candidates)

get_next_level_candidates_vectorized(task, result, next_level_candidates)

get_next_level_numba(promising_candidates)

class pysubgroup.algorithms.BeamSearch(beam_width=20, beam_width_adaptive=False)
Bases: object

Implements the BeamSearch algorithm. Its a basic implementation

execute(task)

class pysubgroup.algorithms.BestFirstSearch

Bases: object

execute(task)

class pysubgroup.algorithms.DFS(apply_representation)
Bases: object

Implementation of a depth-first-search with look-ahead using a provided datastructure.

execute(task)

search_internal(task, result, sg)

class pysubgroup.algorithms.DFSNumeric

Bases: object

execute(task)

search_internal(task, prefix, modification_set, result, bitset)

1.7. pysubgroup 25

https://docs.python.org/3.11/library/functions.html#object
https://docs.python.org/3.11/library/functions.html#object
https://docs.python.org/3.11/library/functions.html#object
https://docs.python.org/3.11/library/functions.html#object
https://docs.python.org/3.11/library/functions.html#object

pysubgroup Documentation, Release latest

tpl

alias of size_mean_parameters

class pysubgroup.algorithms.GeneralisingBFS

Bases: object

execute(task)

class pysubgroup.algorithms.SimpleDFS

Bases: object

execute(task, use_optimistic_estimates=True)

search_internal(task, prefix, modification_set, result, use_optimistic_estimates)

class pysubgroup.algorithms.SimpleSearch(show_progress=True)
Bases: object

execute(task)

class pysubgroup.algorithms.SubgroupDiscoveryTask(data, target, search_space, qf , result_set_size=10,
depth=3, min_quality=-inf , constraints=None)

Bases: object

Capsulates all parameters required to perform standard subgroup discovery

pysubgroup.algorithms.constraints_satisfied(constraints, subgroup, statistics=None, data=None)

pysubgroup.binary_target module

Created on 29.09.2017

@author: lemmerfn

class pysubgroup.binary_target.BinaryTarget(target_attribute=None, target_value=None,
target_selector=None)

Bases: BaseTarget

calculate_statistics(subgroup, data, cached_statistics=None)

covers(instance)

get_attributes()

get_base_statistics(subgroup, data)

statistic_types = ('size_sg', 'size_dataset', 'positives_sg', 'positives_dataset',
'size_complement', 'relative_size_sg', 'relative_size_complement', 'coverage_sg',
'coverage_complement', 'target_share_sg', 'target_share_complement',
'target_share_dataset', 'lift')

class pysubgroup.binary_target.ChiSquaredQF(direction='both', min_instances=5, stat='chi2')
Bases: SimplePositivesQF

ChiSquaredQF which test for statistical independence of a subgroup against it’s complement

. . .

26 Chapter 1. Contents

https://docs.python.org/3.11/library/functions.html#object
https://docs.python.org/3.11/library/functions.html#object
https://docs.python.org/3.11/library/functions.html#object
https://docs.python.org/3.11/library/functions.html#object

pysubgroup Documentation, Release latest

static chi_squared_qf(instances_dataset, positives_dataset, instances_subgroup, positives_subgroup,
min_instances=5, bidirect=True, direction_positive=True, index=0)

Performs chi2 test of statistical independence

Test whether a subgroup is statistically independent from it’s complement (see
scipy.stats.chi2_contingency).

Parameters
instances_dataset –

positives_dataset,
instances_subgroup, positives_subgroup : int

counts of subgroup and dataset

:param
[positives_dataset,]

instances_subgroup, positives_subgroup : int

counts of subgroup and dataset

Parameters

• min_instances (int, optional) – number of required instances, if less -inf is returned
for that subgroup

• bidirect (bool, optional) – If true both directions are considered interesting else di-
rection_positive decides which direction is interesting

• direction_positive (bool, optional) – Only used if bidirect=False; specifies
whether you are interested in positive (True) or negative deviations

• index ({0, 1}, optional) – decides whether the test statistic (0) or the p-value (1)
should be used

static chi_squared_qf_weighted(subgroup, data, weighting_attribute, effective_sample_size=0,
min_instances=5)

evaluate(subgroup, target, data, statistics=None)

class pysubgroup.binary_target.GeneralizationAware_StandardQF(a)
Bases: GeneralizationAwareQF_stats

evaluate(subgroup, target, data, statistics=None)

get_max(*args)

class pysubgroup.binary_target.LiftQF

Bases: StandardQF

Lift Quality Function

LiftQF is a StandardQF with a=0. Thus it treats the difference in ratios as the quality without caring about the
relative size of a subgroup.

class pysubgroup.binary_target.SimpleBinomialQF

Bases: StandardQF

Simple Binomial Quality Function

1.7. pysubgroup 27

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#bool

pysubgroup Documentation, Release latest

SimpleBinomialQF is a StandardQF with a=0.5. It is an order equivalent approximation of the full binomial test
if the subgroup size is much smaller than the size of the entire dataset.

class pysubgroup.binary_target.SimplePositivesQF

Bases: AbstractInterestingnessMeasure

calculate_constant_statistics(data, target)

calculate_statistics(subgroup, target, data, statistics=None)

gp_get_null_vector()

gp_get_params(_cover_arr, v)

gp_get_stats(row_index)

gp_merge(left, right)

property gp_requires_cover_arr

gp_size_sg(stats)

gp_to_str(stats)

tpl

alias of PositivesQF_parameters

class pysubgroup.binary_target.StandardQF(a)
Bases: SimplePositivesQF, BoundedInterestingnessMeasure

StandardQF which weights the relative size against the difference in averages

The StandardQF is a general form of quality function which for different values of a is order equivalen to many
popular quality measures.

a

used as an exponent to scale the relative size to the difference in averages

Type
float

evaluate(subgroup, target, data, statistics=None)

optimistic_estimate(subgroup, target, data, statistics=None)

optimistic_generalisation(subgroup, target, data, statistics=None)

static standard_qf(a, instances_dataset, positives_dataset, instances_subgroup, positives_subgroup)

class pysubgroup.binary_target.WRAccQF

Bases: StandardQF

Weighted Relative Accuracy Quality Function

WRAccQF is a StandardQF with a=1. It is order equivalent to the difference in the observed and expected number
of positive instances.

28 Chapter 1. Contents

https://docs.python.org/3.11/library/functions.html#float

pysubgroup Documentation, Release latest

pysubgroup.constraints module

class pysubgroup.constraints.MinSupportConstraint(min_support)
Bases: object

gp_is_satisfied(node)

gp_prepare(qf)

property is_monotone

is_satisfied(subgroup, statistics=None, data=None)

pysubgroup.datasets module

pysubgroup.datasets.get_credit_data()

pysubgroup.datasets.get_titanic_data()

pysubgroup.fi_target module

Created on 29.09.2017

@author: lemmerfn

class pysubgroup.fi_target.AreaQF

Bases: SimpleCountQF

evaluate(subgroup, target, data, statistics=None)

class pysubgroup.fi_target.CountQF

Bases: SimpleCountQF, BoundedInterestingnessMeasure

evaluate(subgroup, target, data, statistics=None)

optimistic_estimate(subgroup, target, data, statistics=None)

class pysubgroup.fi_target.FITarget

Bases: BaseTarget

calculate_statistics(subgroup_description, data, cached_statistics=None)

get_attributes()

get_base_statistics(subgroup, data)

statistic_types = ('size_sg', 'size_dataset')

class pysubgroup.fi_target.SimpleCountQF

Bases: AbstractInterestingnessMeasure

calculate_constant_statistics(data, target)

calculate_statistics(subgroup_description, target, data, statistics=None)

gp_get_null_vector()

1.7. pysubgroup 29

https://docs.python.org/3.11/library/functions.html#object

pysubgroup Documentation, Release latest

gp_get_params(_cover_arr, v)

gp_get_stats(_)

gp_merge(left, right)

gp_requires_cover_arr = False

gp_size_sg(stats)

gp_to_str(stats)

tpl

alias of CountQF_parameters

pysubgroup.gp_growth module

class pysubgroup.gp_growth.GpGrowth(mode='b_u')
Bases: object

add_if_required(prefix, gp_stats)

calculate_quality_function_for_patterns(task, results, arrs)

check_constraints(node)

check_tree_is_ordered(root, prefix=None)
Verify that the nodes of a tree are sorted in ascending order

convert_results_to_subgroups(results, selectors_sorted)

create_copy_of_path(nodes, new_nodes, stats)

create_copy_of_tree_top_down(from_root, nodes=None, parent=None, is_valid_class=None)

create_initial_tree(arrs)

create_new_tree_from_nodes(nodes)

execute(task)

get_nodes_upwards(node)

get_stats_for_class(cls_nodes)

get_top_down_tree_for_class(cls_nodes, cls, is_valid_class)

merge_trees_top_down(nodes, mutable_root, from_root, is_valid_class)

nodes_to_cls_nodes(nodes)

normal_insert(root, nodes, new_stats, classes)

prepare_selectors(search_space, data)

recurse(cls_nodes, prefix, is_single_path=False)

recurse_top_down(cls_nodes, root, depth_in=0)

30 Chapter 1. Contents

https://docs.python.org/3.11/library/functions.html#object

pysubgroup Documentation, Release latest

remove_selectors_with_low_optimistic_estimate(s, search_space_size)

setup(task)

setup_constraints(constraints, qf)

setup_from_quality_function(qf)

to_file(task, path)

pysubgroup.gp_growth.identity(x, *args, **kwargs)

pysubgroup.measures module

Created on 28.04.2016

@author: lemmerfn

class pysubgroup.measures.AbstractInterestingnessMeasure

Bases: ABC

ensure_statistics(subgroup, target, data, statistics=None)

class pysubgroup.measures.BoundedInterestingnessMeasure

Bases: AbstractInterestingnessMeasure

class pysubgroup.measures.CombinedInterestingnessMeasure(measures, weights=None)
Bases: BoundedInterestingnessMeasure

calculate_constant_statistics(data, target)

calculate_statistics(subgroup, target, data, cached_statistics=None)

evaluate(subgroup, target, data, statistics=None)

evaluate_from_statistics(instances_dataset, positives_dataset, instances_subgroup,
positives_subgroup)

optimistic_estimate(subgroup, target, data, statistics=None)

class pysubgroup.measures.CountCallsInterestingMeasure(qf)
Bases: BoundedInterestingnessMeasure

calculate_statistics(sg, target, data, statistics=None)

class pysubgroup.measures.GeneralizationAwareQF(qf)
Bases: AbstractInterestingnessMeasure

calculate_constant_statistics(data, target)

calculate_statistics(subgroup, target, data, statistics=None)

evaluate(subgroup, target, data, statistics=None)

class ga_tuple(subgroup_quality, generalisation_quality)
Bases: tuple

generalisation_quality

Alias for field number 1

1.7. pysubgroup 31

https://docs.python.org/3.11/library/abc.html#abc.ABC
https://docs.python.org/3.11/library/stdtypes.html#tuple

pysubgroup Documentation, Release latest

subgroup_quality

Alias for field number 0

get_qual_and_previous_qual(subgroup, target, data)

class pysubgroup.measures.GeneralizationAwareQF_stats(qf)
Bases: AbstractInterestingnessMeasure

calculate_constant_statistics(data, target)

calculate_statistics(subgroup, target, data, statistics=None)

evaluate(subgroup, target, data, statistics=None)

ga_tuple

alias of ga_stats_tuple

get_max(*args)

get_stats_and_previous_stats(subgroup, target, data)

pysubgroup.measures.maximum_statistic_filter(result_set, statistic, maximum)

pysubgroup.measures.minimum_quality_filter(result_set, minimum)

pysubgroup.measures.minimum_statistic_filter(result_set, statistic, minimum, data)

pysubgroup.measures.overlap_filter(result_set, data, similarity_level=0.9)

pysubgroup.measures.overlaps_list(sg, list_of_sgs, data, similarity_level=0.9)

pysubgroup.measures.unique_attributes(result_set, data)

pysubgroup.model_target module

class pysubgroup.model_target.EMM_Likelihood(model)
Bases: AbstractInterestingnessMeasure

calculate_constant_statistics(data, target)

calculate_statistics(subgroup, target, data, statistics=None)

evaluate(subgroup, target, data, statistics=None)

get_tuple(sg_size, params, cover_arr)

gp_get_params(cover_arr, v)

property gp_requires_cover_arr

tpl

alias of EMM_Likelihood

class pysubgroup.model_target.PolyRegression_ModelClass(x_name='x', y_name='y', degree=1)
Bases: object

calculate_constant_statistics(data, target)

32 Chapter 1. Contents

https://docs.python.org/3.11/library/functions.html#object

pysubgroup Documentation, Release latest

fit(subgroup, data=None)

gp_get_null_vector()

gp_get_params(v)

gp_get_stats(row_index)

static gp_merge(u, v)

property gp_requires_cover_arr

gp_size_sg(stats)

gp_to_str(stats)

likelihood(stats, sg)

loglikelihood(stats, sg)

class pysubgroup.model_target.beta_tuple(beta, size_sg)
Bases: tuple

beta

Alias for field number 0

size_sg

Alias for field number 1

pysubgroup.numeric_target module

Created on 29.09.2017

@author: lemmerfn

class pysubgroup.numeric_target.NumericTarget(target_variable)
Bases: object

calculate_statistics(subgroup, data, cached_statistics=None)

get_attributes()

get_base_statistics(subgroup, data)

statistic_types = ('size_sg', 'size_dataset', 'mean_sg', 'mean_dataset', 'std_sg',
'std_dataset', 'median_sg', 'median_dataset', 'max_sg', 'max_dataset', 'min_sg',
'min_dataset', 'mean_lift', 'median_lift')

class pysubgroup.numeric_target.StandardQFNumeric(a, invert=False, estimator='sum')
Bases: BoundedInterestingnessMeasure

class Average_Estimator(qf)
Bases: object

calculate_constant_statistics(data, target)

get_data(data, target)

get_estimate(subgroup, sg_size, sg_mean, cover_arr, _)

1.7. pysubgroup 33

https://docs.python.org/3.11/library/stdtypes.html#tuple
https://docs.python.org/3.11/library/functions.html#object
https://docs.python.org/3.11/library/functions.html#object

pysubgroup Documentation, Release latest

class Ordering_Estimator(qf)
Bases: object

calculate_constant_statistics(data, target)

get_data(data, target)

get_estimate(subgroup, sg_size, sg_mean, cover_arr, target_values_sg)

get_estimate_numpy(values_sg, _, mean_dataset)

class Summation_Estimator(qf)
Bases: object

calculate_constant_statistics(data, target)

get_data(data, target)

get_estimate(subgroup, sg_size, sg_mean, cover_arr, _)

calculate_constant_statistics(data, target)

calculate_statistics(subgroup, target, data, statistics=None)

evaluate(subgroup, target, data, statistics=None)

optimistic_estimate(subgroup, target, data, statistics=None)

static standard_qf_numeric(a, _, mean_dataset, instances_subgroup, mean_sg)

tpl

alias of StandardQFNumeric_parameters

class pysubgroup.numeric_target.StandardQFNumericMedian(a, invert=False, estimator='sum')
Bases: BoundedInterestingnessMeasure

class Average_Estimator(qf)
Bases: object

calculate_constant_statistics(data, target)

get_data(data, target)

get_estimate(subgroup, sg_size, sg_mean, cover_arr, _)

class Ordering_Estimator(qf)
Bases: object

calculate_constant_statistics(data, target)

get_data(data, target)

get_estimate(subgroup, sg_size, sg_mean, cover_arr, target_values_sg)

get_estimate_numpy(values_sg, _, mean_dataset)

class Summation_Estimator(qf)
Bases: object

calculate_constant_statistics(data, target)

34 Chapter 1. Contents

https://docs.python.org/3.11/library/functions.html#object
https://docs.python.org/3.11/library/functions.html#object
https://docs.python.org/3.11/library/functions.html#object
https://docs.python.org/3.11/library/functions.html#object
https://docs.python.org/3.11/library/functions.html#object

pysubgroup Documentation, Release latest

get_data(data, target)

get_estimate(subgroup, sg_size, sg_median, cover_arr, _)

calculate_constant_statistics(data, target)

calculate_statistics(subgroup, target, data, statistics=None)

evaluate(subgroup, target, data, statistics=None)

optimistic_estimate(subgroup, target, data, statistics=None)

static standard_qf_numeric(a, _, median_dataset, instances_subgroup, median_sg)

tpl

alias of StandardQFNumericMedian_parameters

class pysubgroup.numeric_target.StandardQFNumericTscore(a, invert=False, estimator='sum')
Bases: BoundedInterestingnessMeasure

class Average_Estimator(qf)
Bases: object

calculate_constant_statistics(data, target)

get_data(data, target)

get_estimate(subgroup, sg_size, sg_mean, cover_arr, _)

class Ordering_Estimator(qf)
Bases: object

calculate_constant_statistics(data, target)

get_data(data, target)

get_estimate(subgroup, sg_size, sg_mean, cover_arr, target_values_sg)

get_estimate_numpy(values_sg, _, mean_dataset)

class Summation_Estimator(qf)
Bases: object

calculate_constant_statistics(data, target)

get_data(data, target)

get_estimate(subgroup, sg_size, sg_mean, cover_arr, _)

calculate_constant_statistics(data, target)

calculate_statistics(subgroup, target, data, statistics=None)

evaluate(subgroup, target, data, statistics=None)

optimistic_estimate(subgroup, target, data, statistics=None)

static standard_qf_numeric(a, _, mean_dataset, instances_subgroup, mean_sg, std_sg)

tpl

alias of StandardQFNumericTscore_parameters

1.7. pysubgroup 35

https://docs.python.org/3.11/library/functions.html#object
https://docs.python.org/3.11/library/functions.html#object
https://docs.python.org/3.11/library/functions.html#object

pysubgroup Documentation, Release latest

pysubgroup.refinement_operator module

class pysubgroup.refinement_operator.RefinementOperator

Bases: object

class pysubgroup.refinement_operator.StaticGeneralizationOperator(selectors)
Bases: object

refinements(sG)

class pysubgroup.refinement_operator.StaticSpecializationOperator(selectors)
Bases: object

refinements(subgroup)

pysubgroup.representations module

class pysubgroup.representations.BitSetRepresentation(df , selectors_to_patch)
Bases: RepresentationBase

Conjunction

alias of BitSet_Conjunction

Disjunction

alias of BitSet_Disjunction

patch_classes()

patch_selector(sel)

class pysubgroup.representations.BitSet_Conjunction(*args, **kwargs)
Bases: Conjunction

append_and(to_append)

compute_representation()

n_instances = 0

property size_sg

class pysubgroup.representations.BitSet_Disjunction(*args, **kwargs)
Bases: Disjunction

append_or(to_append)

compute_representation()

property size_sg

class pysubgroup.representations.NumpySetRepresentation(df , selectors_to_patch)
Bases: RepresentationBase

Conjunction

alias of NumpySet_Conjunction

patch_classes()

36 Chapter 1. Contents

https://docs.python.org/3.11/library/functions.html#object
https://docs.python.org/3.11/library/functions.html#object
https://docs.python.org/3.11/library/functions.html#object

pysubgroup Documentation, Release latest

patch_selector(sel)

class pysubgroup.representations.NumpySet_Conjunction(*args, **kwargs)
Bases: Conjunction

all_set = None

append_and(to_append)

compute_representation()

property size_sg

class pysubgroup.representations.RepresentationBase(new_conjunction, selectors_to_patch)
Bases: object

patch_all_selectors()

patch_classes()

patch_selector(sel)

undo_patch_classes()

class pysubgroup.representations.SetRepresentation(df , selectors_to_patch)
Bases: RepresentationBase

Conjunction

alias of Set_Conjunction

patch_classes()

patch_selector(sel)

class pysubgroup.representations.Set_Conjunction(*args, **kwargs)
Bases: Conjunction

all_set = {}

append_and(to_append)

compute_representation()

property size_sg

pysubgroup.subgroup_description module

Created on 28.04.2016

@author: lemmerfn

class pysubgroup.subgroup_description.BooleanExpressionBase

Bases: ABC

abstract append_and(to_append)

abstract append_or(to_append)

1.7. pysubgroup 37

https://docs.python.org/3.11/library/functions.html#object
https://docs.python.org/3.11/library/abc.html#abc.ABC

pysubgroup Documentation, Release latest

class pysubgroup.subgroup_description.Conjunction(selectors)
Bases: BooleanExpressionBase

append_and(to_append)

append_or(to_append)

covers(instance)

property depth

static from_str(s)

pop_and()

pop_or()

property selectors

class pysubgroup.subgroup_description.DNF(selectors=None)
Bases: Disjunction

append_and(to_append)

append_or(to_append)

pop_and()

class pysubgroup.subgroup_description.Disjunction(selectors=None)
Bases: BooleanExpressionBase

append_and(to_append)

append_or(to_append)

covers(instance)

property selectors

class pysubgroup.subgroup_description.EqualitySelector(*args, **kwargs)
Bases: SelectorBase

property attribute_name

property attribute_value

classmethod compute_descriptions(attribute_name, attribute_value, selector_name)

covers(data)

static from_str(s)

property selectors

set_descriptions(attribute_name, attribute_value, selector_name=None)

class pysubgroup.subgroup_description.IntervalSelector(*args, **kwargs)
Bases: SelectorBase

property attribute_name

38 Chapter 1. Contents

pysubgroup Documentation, Release latest

classmethod compute_descriptions(attribute_name, lower_bound, upper_bound,
selector_name=None)

classmethod compute_string(attribute_name, lower_bound, upper_bound, rounding_digits)

covers(data_instance)

static from_str(s)

property lower_bound

property selectors

set_descriptions(attribute_name, lower_bound, upper_bound, selector_name=None)

property upper_bound

class pysubgroup.subgroup_description.NegatedSelector(*args, **kwargs)
Bases: SelectorBase

property attribute_name

covers(data_instance)

property selectors

set_descriptions(selector)

class pysubgroup.subgroup_description.SelectorBase(*args, **kwargs)
Bases: ABC

abstract set_descriptions(*args, **kwargs)

pysubgroup.subgroup_description.create_nominal_selectors(data, ignore=None)

pysubgroup.subgroup_description.create_nominal_selectors_for_attribute(data, attribute_name,
dtypes=None)

pysubgroup.subgroup_description.create_numeric_selectors(data, nbins=5, intervals_only=True,
weighting_attribute=None, ignore=None)

pysubgroup.subgroup_description.create_numeric_selectors_for_attribute(data, attr_name,
nbins=5,
intervals_only=True,
weight-
ing_attribute=None)

pysubgroup.subgroup_description.create_selectors(data, nbins=5, intervals_only=True, ignore=None)

pysubgroup.subgroup_description.get_cover_array_and_size(subgroup, data_len=None, data=None)

pysubgroup.subgroup_description.get_size(subgroup, data_len=None, data=None)

pysubgroup.subgroup_description.remove_target_attributes(selectors, target)

1.7. pysubgroup 39

https://docs.python.org/3.11/library/abc.html#abc.ABC

pysubgroup Documentation, Release latest

pysubgroup.utils module

Created on 02.05.2016

@author: lemmerfn

class pysubgroup.utils.BaseTarget

Bases: object

all_statistics_present(cached_statistics)

class pysubgroup.utils.SubgroupDiscoveryResult(results, task)
Bases: object

to_dataframe(statistics_to_show=None, autoround=False, include_target=False)

to_descriptions(include_stats=False)

to_latex(statistics_to_show=None)

to_table(statistics_to_show=None, print_header=True, include_target=False)

pysubgroup.utils.add_if_required(result, sg, quality, task: SubgroupDiscoveryTask,
check_for_duplicates=False, statistics=None,
explicit_result_set_size=None)

Important: Only add/remove subgroups from result by using heappop and heappush to ensure order of sub-
groups by quality.

pysubgroup.utils.conditional_invert(val, invert)

pysubgroup.utils.count_bits(bitset_as_int)

pysubgroup.utils.derive_effective_sample_size(weights)

pysubgroup.utils.equal_frequency_discretization(data, attribute_name, nbins=5,
weighting_attribute=None)

pysubgroup.utils.find_set_bits(bitset_as_int)

pysubgroup.utils.float_formatter(x, digits=2)

pysubgroup.utils.intersect_of_ordered_list(list_1, list_2)

pysubgroup.utils.is_categorical_attribute(data, attribute_name)

pysubgroup.utils.is_numerical_attribute(data, attribute_name)

pysubgroup.utils.minimum_required_quality(result, task)

pysubgroup.utils.overlap(sg, another_sg, data)

pysubgroup.utils.perc_formatter(x)

pysubgroup.utils.powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)

pysubgroup.utils.prepare_subgroup_discovery_result(result, task)

40 Chapter 1. Contents

https://docs.python.org/3.11/library/functions.html#object
https://docs.python.org/3.11/library/functions.html#object

pysubgroup Documentation, Release latest

pysubgroup.utils.remove_selectors_with_attributes(selector_list, attribute_list)

pysubgroup.utils.results_df_autoround(df)

pysubgroup.utils.to_bits(list_of_ints)

pysubgroup.visualization module

pysubgroup.visualization.compare_distributions_numeric(sgs, data, bins)

pysubgroup.visualization.plot_distribution_numeric(sg, data, bins)

pysubgroup.visualization.plot_npspace(result_df , data, annotate=True, fixed_limits=False)

pysubgroup.visualization.plot_roc(result_df , data, qf=<pysubgroup.binary_target.StandardQF object>,
levels=40, annotate=False)

pysubgroup.visualization.plot_sgbars(result_df , _, ylabel='target share', title='Discovered Subgroups',
dynamic_widths=False, _suffix='')

pysubgroup.visualization.similarity_dendrogram(result, data)

pysubgroup.visualization.similarity_sgs(sgd_results, data, color=True)

pysubgroup.visualization.supportSetVisualization(result, in_order=True, drop_empty=True)

Module contents

1.7. pysubgroup 41

pysubgroup Documentation, Release latest

42 Chapter 1. Contents

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

43

pysubgroup Documentation, Release latest

44 Chapter 2. Indices and tables

PYTHON MODULE INDEX

p
pysubgroup, 41
pysubgroup.algorithms, 25
pysubgroup.binary_target, 26
pysubgroup.constraints, 29
pysubgroup.datasets, 29
pysubgroup.fi_target, 29
pysubgroup.gp_growth, 30
pysubgroup.measures, 31
pysubgroup.model_target, 32
pysubgroup.numeric_target, 33
pysubgroup.refinement_operator, 36
pysubgroup.representations, 36
pysubgroup.subgroup_description, 37
pysubgroup.utils, 40
pysubgroup.visualization, 41

45

pysubgroup Documentation, Release latest

46 Python Module Index

INDEX

A
a (pysubgroup.binary_target.StandardQF attribute), 28
AbstractInterestingnessMeasure (class in pysub-

group.measures), 31
add_if_required() (in module pysubgroup.utils), 40
add_if_required() (pysub-

group.gp_growth.GpGrowth method), 30
all_set (pysubgroup.representations.NumpySet_Conjunction

attribute), 37
all_set (pysubgroup.representations.Set_Conjunction

attribute), 37
all_statistics_present() (pysub-

group.utils.BaseTarget method), 40
append_and() (pysub-

group.representations.BitSet_Conjunction
method), 36

append_and() (pysub-
group.representations.NumpySet_Conjunction
method), 37

append_and() (pysub-
group.representations.Set_Conjunction
method), 37

append_and() (pysub-
group.subgroup_description.BooleanExpressionBase
method), 37

append_and() (pysub-
group.subgroup_description.Conjunction
method), 38

append_and() (pysub-
group.subgroup_description.Disjunction
method), 38

append_and() (pysubgroup.subgroup_description.DNF
method), 38

append_or() (pysubgroup.representations.BitSet_Disjunction
method), 36

append_or() (pysubgroup.subgroup_description.BooleanExpressionBase
method), 37

append_or() (pysubgroup.subgroup_description.Conjunction
method), 38

append_or() (pysubgroup.subgroup_description.Disjunction
method), 38

append_or() (pysubgroup.subgroup_description.DNF

method), 38
Apriori (class in pysubgroup.algorithms), 25
AreaQF (class in pysubgroup.fi_target), 29
attribute_name (pysub-

group.subgroup_description.EqualitySelector
property), 38

attribute_name (pysub-
group.subgroup_description.IntervalSelector
property), 38

attribute_name (pysub-
group.subgroup_description.NegatedSelector
property), 39

attribute_value (pysub-
group.subgroup_description.EqualitySelector
property), 38

B
BaseTarget (class in pysubgroup.utils), 40
BeamSearch (class in pysubgroup.algorithms), 25
BestFirstSearch (class in pysubgroup.algorithms), 25
beta (pysubgroup.model_target.beta_tuple attribute), 33
beta_tuple (class in pysubgroup.model_target), 33
BinaryTarget (class in pysubgroup.binary_target), 26
BitSet_Conjunction (class in pysub-

group.representations), 36
BitSet_Disjunction (class in pysub-

group.representations), 36
BitSetRepresentation (class in pysub-

group.representations), 36
BooleanExpressionBase (class in pysub-

group.subgroup_description), 37
BoundedInterestingnessMeasure (class in pysub-

group.measures), 31

C
calculate_constant_statistics() (pysub-

group.binary_target.SimplePositivesQF
method), 28

calculate_constant_statistics() (pysub-
group.fi_target.SimpleCountQF method),
29

47

pysubgroup Documentation, Release latest

calculate_constant_statistics() (pysub-
group.measures.CombinedInterestingnessMeasure
method), 31

calculate_constant_statistics() (pysub-
group.measures.GeneralizationAwareQF
method), 31

calculate_constant_statistics() (pysub-
group.measures.GeneralizationAwareQF_stats
method), 32

calculate_constant_statistics() (pysub-
group.model_target.EMM_Likelihood method),
32

calculate_constant_statistics() (pysub-
group.model_target.PolyRegression_ModelClass
method), 32

calculate_constant_statistics() (pysub-
group.numeric_target.StandardQFNumeric
method), 34

calculate_constant_statistics() (pysub-
group.numeric_target.StandardQFNumeric.Average_Estimator
method), 33

calculate_constant_statistics() (pysub-
group.numeric_target.StandardQFNumeric.Ordering_Estimator
method), 34

calculate_constant_statistics() (pysub-
group.numeric_target.StandardQFNumeric.Summation_Estimator
method), 34

calculate_constant_statistics() (pysub-
group.numeric_target.StandardQFNumericMedian
method), 35

calculate_constant_statistics() (pysub-
group.numeric_target.StandardQFNumericMedian.Average_Estimator
method), 34

calculate_constant_statistics() (pysub-
group.numeric_target.StandardQFNumericMedian.Ordering_Estimator
method), 34

calculate_constant_statistics() (pysub-
group.numeric_target.StandardQFNumericMedian.Summation_Estimator
method), 34

calculate_constant_statistics() (pysub-
group.numeric_target.StandardQFNumericTscore
method), 35

calculate_constant_statistics() (pysub-
group.numeric_target.StandardQFNumericTscore.Average_Estimator
method), 35

calculate_constant_statistics() (pysub-
group.numeric_target.StandardQFNumericTscore.Ordering_Estimator
method), 35

calculate_constant_statistics() (pysub-
group.numeric_target.StandardQFNumericTscore.Summation_Estimator
method), 35

calculate_quality_function_for_patterns()
(pysubgroup.gp_growth.GpGrowth method), 30

calculate_statistics() (pysub-

group.binary_target.BinaryTarget method),
26

calculate_statistics() (pysub-
group.binary_target.SimplePositivesQF
method), 28

calculate_statistics() (pysub-
group.fi_target.FITarget method), 29

calculate_statistics() (pysub-
group.fi_target.SimpleCountQF method),
29

calculate_statistics() (pysub-
group.measures.CombinedInterestingnessMeasure
method), 31

calculate_statistics() (pysub-
group.measures.CountCallsInterestingMeasure
method), 31

calculate_statistics() (pysub-
group.measures.GeneralizationAwareQF
method), 31

calculate_statistics() (pysub-
group.measures.GeneralizationAwareQF_stats
method), 32

calculate_statistics() (pysub-
group.model_target.EMM_Likelihood method),
32

calculate_statistics() (pysub-
group.numeric_target.NumericTarget method),
33

calculate_statistics() (pysub-
group.numeric_target.StandardQFNumeric
method), 34

calculate_statistics() (pysub-
group.numeric_target.StandardQFNumericMedian
method), 35

calculate_statistics() (pysub-
group.numeric_target.StandardQFNumericTscore
method), 35

check_constraints() (pysub-
group.gp_growth.GpGrowth method), 30

check_tree_is_ordered() (pysub-
group.gp_growth.GpGrowth method), 30

chi_squared_qf() (pysub-
group.binary_target.ChiSquaredQF static
method), 26

chi_squared_qf_weighted() (pysub-
group.binary_target.ChiSquaredQF static
method), 27

ChiSquaredQF (class in pysubgroup.binary_target), 26
CombinedInterestingnessMeasure (class in pysub-

group.measures), 31
compare_distributions_numeric() (in module py-

subgroup.visualization), 41
compute_descriptions() (pysub-

group.subgroup_description.EqualitySelector

48 Index

pysubgroup Documentation, Release latest

class method), 38
compute_descriptions() (pysub-

group.subgroup_description.IntervalSelector
class method), 38

compute_representation() (pysub-
group.representations.BitSet_Conjunction
method), 36

compute_representation() (pysub-
group.representations.BitSet_Disjunction
method), 36

compute_representation() (pysub-
group.representations.NumpySet_Conjunction
method), 37

compute_representation() (pysub-
group.representations.Set_Conjunction
method), 37

compute_string() (pysub-
group.subgroup_description.IntervalSelector
class method), 39

conditional_invert() (in module pysubgroup.utils),
40

Conjunction (class in pysub-
group.subgroup_description), 37

Conjunction (pysubgroup.representations.BitSetRepresentation
attribute), 36

Conjunction (pysubgroup.representations.NumpySetRepresentation
attribute), 36

Conjunction (pysubgroup.representations.SetRepresentation
attribute), 37

constraints_satisfied() (in module pysub-
group.algorithms), 26

convert_results_to_subgroups() (pysub-
group.gp_growth.GpGrowth method), 30

count_bits() (in module pysubgroup.utils), 40
CountCallsInterestingMeasure (class in pysub-

group.measures), 31
CountQF (class in pysubgroup.fi_target), 29
covers() (pysubgroup.binary_target.BinaryTarget

method), 26
covers() (pysubgroup.subgroup_description.Conjunction

method), 38
covers() (pysubgroup.subgroup_description.Disjunction

method), 38
covers() (pysubgroup.subgroup_description.EqualitySelector

method), 38
covers() (pysubgroup.subgroup_description.IntervalSelector

method), 39
covers() (pysubgroup.subgroup_description.NegatedSelector

method), 39
create_copy_of_path() (pysub-

group.gp_growth.GpGrowth method), 30
create_copy_of_tree_top_down() (pysub-

group.gp_growth.GpGrowth method), 30
create_initial_tree() (pysub-

group.gp_growth.GpGrowth method), 30
create_new_tree_from_nodes() (pysub-

group.gp_growth.GpGrowth method), 30
create_nominal_selectors() (in module pysub-

group.subgroup_description), 39
create_nominal_selectors_for_attribute() (in

module pysubgroup.subgroup_description), 39
create_numeric_selectors() (in module pysub-

group.subgroup_description), 39
create_numeric_selectors_for_attribute() (in

module pysubgroup.subgroup_description), 39
create_selectors() (in module pysub-

group.subgroup_description), 39

D
depth (pysubgroup.subgroup_description.Conjunction

property), 38
derive_effective_sample_size() (in module pysub-

group.utils), 40
DFS (class in pysubgroup.algorithms), 25
DFSNumeric (class in pysubgroup.algorithms), 25
Disjunction (class in pysub-

group.subgroup_description), 38
Disjunction (pysubgroup.representations.BitSetRepresentation

attribute), 36
DNF (class in pysubgroup.subgroup_description), 38

E
EMM_Likelihood (class in pysubgroup.model_target), 32
ensure_statistics() (pysub-

group.measures.AbstractInterestingnessMeasure
method), 31

equal_frequency_discretization() (in module py-
subgroup.utils), 40

EqualitySelector (class in pysub-
group.subgroup_description), 38

evaluate() (pysubgroup.binary_target.ChiSquaredQF
method), 27

evaluate() (pysubgroup.binary_target.GeneralizationAware_StandardQF
method), 27

evaluate() (pysubgroup.binary_target.StandardQF
method), 28

evaluate() (pysubgroup.fi_target.AreaQF method), 29
evaluate() (pysubgroup.fi_target.CountQF method), 29
evaluate() (pysubgroup.measures.CombinedInterestingnessMeasure

method), 31
evaluate() (pysubgroup.measures.GeneralizationAwareQF

method), 31
evaluate() (pysubgroup.measures.GeneralizationAwareQF_stats

method), 32
evaluate() (pysubgroup.model_target.EMM_Likelihood

method), 32
evaluate() (pysubgroup.numeric_target.StandardQFNumeric

method), 34

Index 49

pysubgroup Documentation, Release latest

evaluate() (pysubgroup.numeric_target.StandardQFNumericMedian
method), 35

evaluate() (pysubgroup.numeric_target.StandardQFNumericTscore
method), 35

evaluate_from_statistics() (pysub-
group.measures.CombinedInterestingnessMeasure
method), 31

execute() (pysubgroup.algorithms.Apriori method), 25
execute() (pysubgroup.algorithms.BeamSearch

method), 25
execute() (pysubgroup.algorithms.BestFirstSearch

method), 25
execute() (pysubgroup.algorithms.DFS method), 25
execute() (pysubgroup.algorithms.DFSNumeric

method), 25
execute() (pysubgroup.algorithms.GeneralisingBFS

method), 26
execute() (pysubgroup.algorithms.SimpleDFS method),

26
execute() (pysubgroup.algorithms.SimpleSearch

method), 26
execute() (pysubgroup.gp_growth.GpGrowth method),

30

F
find_set_bits() (in module pysubgroup.utils), 40
fit() (pysubgroup.model_target.PolyRegression_ModelClass

method), 32
FITarget (class in pysubgroup.fi_target), 29
float_formatter() (in module pysubgroup.utils), 40
from_str() (pysubgroup.subgroup_description.Conjunction

static method), 38
from_str() (pysubgroup.subgroup_description.EqualitySelector

static method), 38
from_str() (pysubgroup.subgroup_description.IntervalSelector

static method), 39

G
ga_tuple (pysubgroup.measures.GeneralizationAwareQF_stats

attribute), 32
generalisation_quality (pysub-

group.measures.GeneralizationAwareQF.ga_tuple
attribute), 31

GeneralisingBFS (class in pysubgroup.algorithms), 26
GeneralizationAware_StandardQF (class in pysub-

group.binary_target), 27
GeneralizationAwareQF (class in pysub-

group.measures), 31
GeneralizationAwareQF.ga_tuple (class in pysub-

group.measures), 31
GeneralizationAwareQF_stats (class in pysub-

group.measures), 32
get_attributes() (pysub-

group.binary_target.BinaryTarget method),

26
get_attributes() (pysubgroup.fi_target.FITarget

method), 29
get_attributes() (pysub-

group.numeric_target.NumericTarget method),
33

get_base_statistics() (pysub-
group.binary_target.BinaryTarget method),
26

get_base_statistics() (pysub-
group.fi_target.FITarget method), 29

get_base_statistics() (pysub-
group.numeric_target.NumericTarget method),
33

get_cover_array_and_size() (in module pysub-
group.subgroup_description), 39

get_credit_data() (in module pysubgroup.datasets),
29

get_data() (pysubgroup.numeric_target.StandardQFNumeric.Average_Estimator
method), 33

get_data() (pysubgroup.numeric_target.StandardQFNumeric.Ordering_Estimator
method), 34

get_data() (pysubgroup.numeric_target.StandardQFNumeric.Summation_Estimator
method), 34

get_data() (pysubgroup.numeric_target.StandardQFNumericMedian.Average_Estimator
method), 34

get_data() (pysubgroup.numeric_target.StandardQFNumericMedian.Ordering_Estimator
method), 34

get_data() (pysubgroup.numeric_target.StandardQFNumericMedian.Summation_Estimator
method), 34

get_data() (pysubgroup.numeric_target.StandardQFNumericTscore.Average_Estimator
method), 35

get_data() (pysubgroup.numeric_target.StandardQFNumericTscore.Ordering_Estimator
method), 35

get_data() (pysubgroup.numeric_target.StandardQFNumericTscore.Summation_Estimator
method), 35

get_estimate() (pysub-
group.numeric_target.StandardQFNumeric.Average_Estimator
method), 33

get_estimate() (pysub-
group.numeric_target.StandardQFNumeric.Ordering_Estimator
method), 34

get_estimate() (pysub-
group.numeric_target.StandardQFNumeric.Summation_Estimator
method), 34

get_estimate() (pysub-
group.numeric_target.StandardQFNumericMedian.Average_Estimator
method), 34

get_estimate() (pysub-
group.numeric_target.StandardQFNumericMedian.Ordering_Estimator
method), 34

get_estimate() (pysub-
group.numeric_target.StandardQFNumericMedian.Summation_Estimator
method), 35

50 Index

pysubgroup Documentation, Release latest

get_estimate() (pysub-
group.numeric_target.StandardQFNumericTscore.Average_Estimator
method), 35

get_estimate() (pysub-
group.numeric_target.StandardQFNumericTscore.Ordering_Estimator
method), 35

get_estimate() (pysub-
group.numeric_target.StandardQFNumericTscore.Summation_Estimator
method), 35

get_estimate_numpy() (pysub-
group.numeric_target.StandardQFNumeric.Ordering_Estimator
method), 34

get_estimate_numpy() (pysub-
group.numeric_target.StandardQFNumericMedian.Ordering_Estimator
method), 34

get_estimate_numpy() (pysub-
group.numeric_target.StandardQFNumericTscore.Ordering_Estimator
method), 35

get_max() (pysubgroup.binary_target.GeneralizationAware_StandardQF
method), 27

get_max() (pysubgroup.measures.GeneralizationAwareQF_stats
method), 32

get_next_level() (pysubgroup.algorithms.Apriori
method), 25

get_next_level_candidates() (pysub-
group.algorithms.Apriori method), 25

get_next_level_candidates_vectorized() (py-
subgroup.algorithms.Apriori method), 25

get_next_level_numba() (pysub-
group.algorithms.Apriori method), 25

get_nodes_upwards() (pysub-
group.gp_growth.GpGrowth method), 30

get_qual_and_previous_qual() (pysub-
group.measures.GeneralizationAwareQF
method), 32

get_size() (in module pysub-
group.subgroup_description), 39

get_stats_and_previous_stats() (pysub-
group.measures.GeneralizationAwareQF_stats
method), 32

get_stats_for_class() (pysub-
group.gp_growth.GpGrowth method), 30

get_titanic_data() (in module pysubgroup.datasets),
29

get_top_down_tree_for_class() (pysub-
group.gp_growth.GpGrowth method), 30

get_tuple() (pysubgroup.model_target.EMM_Likelihood
method), 32

gp_get_null_vector() (pysub-
group.binary_target.SimplePositivesQF
method), 28

gp_get_null_vector() (pysub-
group.fi_target.SimpleCountQF method),
29

gp_get_null_vector() (pysub-
group.model_target.PolyRegression_ModelClass
method), 33

gp_get_params() (pysub-
group.binary_target.SimplePositivesQF
method), 28

gp_get_params() (pysub-
group.fi_target.SimpleCountQF method),
29

gp_get_params() (pysub-
group.model_target.EMM_Likelihood method),
32

gp_get_params() (pysub-
group.model_target.PolyRegression_ModelClass
method), 33

gp_get_stats() (pysub-
group.binary_target.SimplePositivesQF
method), 28

gp_get_stats() (pysubgroup.fi_target.SimpleCountQF
method), 30

gp_get_stats() (pysub-
group.model_target.PolyRegression_ModelClass
method), 33

gp_is_satisfied() (pysub-
group.constraints.MinSupportConstraint
method), 29

gp_merge() (pysubgroup.binary_target.SimplePositivesQF
method), 28

gp_merge() (pysubgroup.fi_target.SimpleCountQF
method), 30

gp_merge() (pysubgroup.model_target.PolyRegression_ModelClass
static method), 33

gp_prepare() (pysub-
group.constraints.MinSupportConstraint
method), 29

gp_requires_cover_arr (pysub-
group.binary_target.SimplePositivesQF
property), 28

gp_requires_cover_arr (pysub-
group.fi_target.SimpleCountQF attribute),
30

gp_requires_cover_arr (pysub-
group.model_target.EMM_Likelihood prop-
erty), 32

gp_requires_cover_arr (pysub-
group.model_target.PolyRegression_ModelClass
property), 33

gp_size_sg() (pysub-
group.binary_target.SimplePositivesQF
method), 28

gp_size_sg() (pysubgroup.fi_target.SimpleCountQF
method), 30

gp_size_sg() (pysub-
group.model_target.PolyRegression_ModelClass

Index 51

pysubgroup Documentation, Release latest

method), 33
gp_to_str() (pysubgroup.binary_target.SimplePositivesQF

method), 28
gp_to_str() (pysubgroup.fi_target.SimpleCountQF

method), 30
gp_to_str() (pysubgroup.model_target.PolyRegression_ModelClass

method), 33
GpGrowth (class in pysubgroup.gp_growth), 30

I
identity() (in module pysubgroup.gp_growth), 31
intersect_of_ordered_list() (in module pysub-

group.utils), 40
IntervalSelector (class in pysub-

group.subgroup_description), 38
is_categorical_attribute() (in module pysub-

group.utils), 40
is_monotone (pysubgroup.constraints.MinSupportConstraint

property), 29
is_numerical_attribute() (in module pysub-

group.utils), 40
is_satisfied() (pysub-

group.constraints.MinSupportConstraint
method), 29

L
LiftQF (class in pysubgroup.binary_target), 27
likelihood() (pysub-

group.model_target.PolyRegression_ModelClass
method), 33

loglikelihood() (pysub-
group.model_target.PolyRegression_ModelClass
method), 33

lower_bound (pysubgroup.subgroup_description.IntervalSelector
property), 39

M
maximum_statistic_filter() (in module pysub-

group.measures), 32
merge_trees_top_down() (pysub-

group.gp_growth.GpGrowth method), 30
minimum_quality_filter() (in module pysub-

group.measures), 32
minimum_required_quality() (in module pysub-

group.utils), 40
minimum_statistic_filter() (in module pysub-

group.measures), 32
MinSupportConstraint (class in pysub-

group.constraints), 29
module

pysubgroup, 41
pysubgroup.algorithms, 25
pysubgroup.binary_target, 26
pysubgroup.constraints, 29

pysubgroup.datasets, 29
pysubgroup.fi_target, 29
pysubgroup.gp_growth, 30
pysubgroup.measures, 31
pysubgroup.model_target, 32
pysubgroup.numeric_target, 33
pysubgroup.refinement_operator, 36
pysubgroup.representations, 36
pysubgroup.subgroup_description, 37
pysubgroup.utils, 40
pysubgroup.visualization, 41

N
n_instances (pysubgroup.representations.BitSet_Conjunction

attribute), 36
NegatedSelector (class in pysub-

group.subgroup_description), 39
nodes_to_cls_nodes() (pysub-

group.gp_growth.GpGrowth method), 30
normal_insert() (pysubgroup.gp_growth.GpGrowth

method), 30
NumericTarget (class in pysubgroup.numeric_target),

33
NumpySet_Conjunction (class in pysub-

group.representations), 37
NumpySetRepresentation (class in pysub-

group.representations), 36

O
optimistic_estimate() (pysub-

group.binary_target.StandardQF method),
28

optimistic_estimate() (pysub-
group.fi_target.CountQF method), 29

optimistic_estimate() (pysub-
group.measures.CombinedInterestingnessMeasure
method), 31

optimistic_estimate() (pysub-
group.numeric_target.StandardQFNumeric
method), 34

optimistic_estimate() (pysub-
group.numeric_target.StandardQFNumericMedian
method), 35

optimistic_estimate() (pysub-
group.numeric_target.StandardQFNumericTscore
method), 35

optimistic_generalisation() (pysub-
group.binary_target.StandardQF method),
28

overlap() (in module pysubgroup.utils), 40
overlap_filter() (in module pysubgroup.measures),

32
overlaps_list() (in module pysubgroup.measures), 32

52 Index

pysubgroup Documentation, Release latest

P
patch_all_selectors() (pysub-

group.representations.RepresentationBase
method), 37

patch_classes() (pysub-
group.representations.BitSetRepresentation
method), 36

patch_classes() (pysub-
group.representations.NumpySetRepresentation
method), 36

patch_classes() (pysub-
group.representations.RepresentationBase
method), 37

patch_classes() (pysub-
group.representations.SetRepresentation
method), 37

patch_selector() (pysub-
group.representations.BitSetRepresentation
method), 36

patch_selector() (pysub-
group.representations.NumpySetRepresentation
method), 36

patch_selector() (pysub-
group.representations.RepresentationBase
method), 37

patch_selector() (pysub-
group.representations.SetRepresentation
method), 37

perc_formatter() (in module pysubgroup.utils), 40
plot_distribution_numeric() (in module pysub-

group.visualization), 41
plot_npspace() (in module pysubgroup.visualization),

41
plot_roc() (in module pysubgroup.visualization), 41
plot_sgbars() (in module pysubgroup.visualization),

41
PolyRegression_ModelClass (class in pysub-

group.model_target), 32
pop_and() (pysubgroup.subgroup_description.Conjunction

method), 38
pop_and() (pysubgroup.subgroup_description.DNF

method), 38
pop_or() (pysubgroup.subgroup_description.Conjunction

method), 38
powerset() (in module pysubgroup.utils), 40
prepare_selectors() (pysub-

group.gp_growth.GpGrowth method), 30
prepare_subgroup_discovery_result() (in module

pysubgroup.utils), 40
pysubgroup

module, 41
pysubgroup.algorithms

module, 25
pysubgroup.binary_target

module, 26
pysubgroup.constraints

module, 29
pysubgroup.datasets

module, 29
pysubgroup.fi_target

module, 29
pysubgroup.gp_growth

module, 30
pysubgroup.measures

module, 31
pysubgroup.model_target

module, 32
pysubgroup.numeric_target

module, 33
pysubgroup.refinement_operator

module, 36
pysubgroup.representations

module, 36
pysubgroup.subgroup_description

module, 37
pysubgroup.utils

module, 40
pysubgroup.visualization

module, 41

R
recurse() (pysubgroup.gp_growth.GpGrowth method),

30
recurse_top_down() (pysub-

group.gp_growth.GpGrowth method), 30
RefinementOperator (class in pysub-

group.refinement_operator), 36
refinements() (pysub-

group.refinement_operator.StaticGeneralizationOperator
method), 36

refinements() (pysub-
group.refinement_operator.StaticSpecializationOperator
method), 36

remove_selectors_with_attributes() (in module
pysubgroup.utils), 40

remove_selectors_with_low_optimistic_estimate()
(pysubgroup.gp_growth.GpGrowth method), 30

remove_target_attributes() (in module pysub-
group.subgroup_description), 39

RepresentationBase (class in pysub-
group.representations), 37

results_df_autoround() (in module pysub-
group.utils), 41

S
search_internal() (pysubgroup.algorithms.DFS

method), 25

Index 53

pysubgroup Documentation, Release latest

search_internal() (pysub-
group.algorithms.DFSNumeric method),
25

search_internal() (pysub-
group.algorithms.SimpleDFS method), 26

SelectorBase (class in pysub-
group.subgroup_description), 39

selectors (pysubgroup.subgroup_description.Conjunction
property), 38

selectors (pysubgroup.subgroup_description.Disjunction
property), 38

selectors (pysubgroup.subgroup_description.EqualitySelector
property), 38

selectors (pysubgroup.subgroup_description.IntervalSelector
property), 39

selectors (pysubgroup.subgroup_description.NegatedSelector
property), 39

Set_Conjunction (class in pysub-
group.representations), 37

set_descriptions() (pysub-
group.subgroup_description.EqualitySelector
method), 38

set_descriptions() (pysub-
group.subgroup_description.IntervalSelector
method), 39

set_descriptions() (pysub-
group.subgroup_description.NegatedSelector
method), 39

set_descriptions() (pysub-
group.subgroup_description.SelectorBase
method), 39

SetRepresentation (class in pysub-
group.representations), 37

setup() (pysubgroup.gp_growth.GpGrowth method), 31
setup_constraints() (pysub-

group.gp_growth.GpGrowth method), 31
setup_from_quality_function() (pysub-

group.gp_growth.GpGrowth method), 31
similarity_dendrogram() (in module pysub-

group.visualization), 41
similarity_sgs() (in module pysub-

group.visualization), 41
SimpleBinomialQF (class in pysub-

group.binary_target), 27
SimpleCountQF (class in pysubgroup.fi_target), 29
SimpleDFS (class in pysubgroup.algorithms), 26
SimplePositivesQF (class in pysub-

group.binary_target), 28
SimpleSearch (class in pysubgroup.algorithms), 26
size_sg (pysubgroup.model_target.beta_tuple attribute),

33
size_sg (pysubgroup.representations.BitSet_Conjunction

property), 36
size_sg (pysubgroup.representations.BitSet_Disjunction

property), 36
size_sg (pysubgroup.representations.NumpySet_Conjunction

property), 37
size_sg (pysubgroup.representations.Set_Conjunction

property), 37
standard_qf() (pysubgroup.binary_target.StandardQF

static method), 28
standard_qf_numeric() (pysub-

group.numeric_target.StandardQFNumeric
static method), 34

standard_qf_numeric() (pysub-
group.numeric_target.StandardQFNumericMedian
static method), 35

standard_qf_numeric() (pysub-
group.numeric_target.StandardQFNumericTscore
static method), 35

StandardQF (class in pysubgroup.binary_target), 28
StandardQFNumeric (class in pysub-

group.numeric_target), 33
StandardQFNumeric.Average_Estimator (class in

pysubgroup.numeric_target), 33
StandardQFNumeric.Ordering_Estimator (class in

pysubgroup.numeric_target), 33
StandardQFNumeric.Summation_Estimator (class in

pysubgroup.numeric_target), 34
StandardQFNumericMedian (class in pysub-

group.numeric_target), 34
StandardQFNumericMedian.Average_Estimator

(class in pysubgroup.numeric_target), 34
StandardQFNumericMedian.Ordering_Estimator

(class in pysubgroup.numeric_target), 34
StandardQFNumericMedian.Summation_Estimator

(class in pysubgroup.numeric_target), 34
StandardQFNumericTscore (class in pysub-

group.numeric_target), 35
StandardQFNumericTscore.Average_Estimator

(class in pysubgroup.numeric_target), 35
StandardQFNumericTscore.Ordering_Estimator

(class in pysubgroup.numeric_target), 35
StandardQFNumericTscore.Summation_Estimator

(class in pysubgroup.numeric_target), 35
StaticGeneralizationOperator (class in pysub-

group.refinement_operator), 36
StaticSpecializationOperator (class in pysub-

group.refinement_operator), 36
statistic_types (pysub-

group.binary_target.BinaryTarget attribute),
26

statistic_types (pysubgroup.fi_target.FITarget
attribute), 29

statistic_types (pysub-
group.numeric_target.NumericTarget at-
tribute), 33

subgroup_quality (pysub-

54 Index

pysubgroup Documentation, Release latest

group.measures.GeneralizationAwareQF.ga_tuple
attribute), 31

SubgroupDiscoveryResult (class in pysubgroup.utils),
40

SubgroupDiscoveryTask (class in pysub-
group.algorithms), 26

supportSetVisualization() (in module pysub-
group.visualization), 41

T
to_bits() (in module pysubgroup.utils), 41
to_dataframe() (pysub-

group.utils.SubgroupDiscoveryResult method),
40

to_descriptions() (pysub-
group.utils.SubgroupDiscoveryResult method),
40

to_file() (pysubgroup.gp_growth.GpGrowth method),
31

to_latex() (pysubgroup.utils.SubgroupDiscoveryResult
method), 40

to_table() (pysubgroup.utils.SubgroupDiscoveryResult
method), 40

tpl (pysubgroup.algorithms.DFSNumeric attribute), 25
tpl (pysubgroup.binary_target.SimplePositivesQF

attribute), 28
tpl (pysubgroup.fi_target.SimpleCountQF attribute), 30
tpl (pysubgroup.model_target.EMM_Likelihood at-

tribute), 32
tpl (pysubgroup.numeric_target.StandardQFNumeric at-

tribute), 34
tpl (pysubgroup.numeric_target.StandardQFNumericMedian

attribute), 35
tpl (pysubgroup.numeric_target.StandardQFNumericTscore

attribute), 35

U
undo_patch_classes() (pysub-

group.representations.RepresentationBase
method), 37

unique_attributes() (in module pysub-
group.measures), 32

upper_bound (pysubgroup.subgroup_description.IntervalSelector
property), 39

W
WRAccQF (class in pysubgroup.binary_target), 28

Index 55

	Contents
	pysubgroup
	Subgroup Discovery
	Prerequisites and Installation

	How to use:
	Key classes
	License
	Warning
	Cite
	Note

	Components
	GP-Growth
	Basic usage
	Create a custom target
	Valuation Basis
	Required Methods
	Saving a gp_tree

	Selectors
	Basic Selectors
	Negations
	Conjunctions
	Disjunctions
	Implementing your own

	Targets and Quality Functions
	Frequent Itemset Targets
	Binary Targets
	Nominal Targets
	Numeric Targets
	Custom Quality Function

	Contributing
	Issue Reports
	Documentation Improvements
	Code Contributions
	Submit an issue
	Create an environment
	Clone the repository
	Implement your changes
	Submit your contribution
	Troubleshooting

	Maintainer tasks
	Releases

	License
	Contributors
	Changelog
	[0.7.6] - 2020-05-20
	[0.7.5] - 2020-05-20
	[0.7.1] - 2020-05-20
	Added
	Removed
	Changed
	Changed internally

	[0.7.0] - 2020-04-24
	Changed:
	Added

	[0.6.2.1] - 2019-20-11
	Added
	Bugfix
	Improvements

	[0.6.2] - 2019-31-10
	Changed
	Added
	Improvements

	pysubgroup
	pysubgroup package
	Submodules
	pysubgroup.algorithms module
	pysubgroup.binary_target module
	pysubgroup.constraints module
	pysubgroup.datasets module
	pysubgroup.fi_target module
	pysubgroup.gp_growth module
	pysubgroup.measures module
	pysubgroup.model_target module
	pysubgroup.numeric_target module
	pysubgroup.refinement_operator module
	pysubgroup.representations module
	pysubgroup.subgroup_description module
	pysubgroup.utils module
	pysubgroup.visualization module
	Module contents

	Indices and tables
	Python Module Index
	Index

